
Web App Migration Checklist

When to use

This checklist is intended as a reusable resource for engineering and technical leads
involved in planning and executing migrations. Use it to:

●​ Scope and prepare a successful migration effort.
●​ Ensure consistency across teams and systems.
●​ Avoid common migration pitfalls and regression risks.
●​ Align migration activities with QA, product, and roadmap planning.
●​ Facilitate retrospectives and continuous improvement.

How to use

Use this checklist when:

●​ Upgrading major frameworks, libraries, or dependencies.
●​ Replacing legacy code.
●​ Adopting new architecture patterns.
●​ Planning any multi-sprint technical migration or refactoring initiative.
●​ Planning cleanup following major feature launches where tech debt has

accumulated.

BEFORE migration starts

What to consider and prepare in advance:

​ Define migration goals e.g. remove legacy systems, upgrade frameworks,
improve maintainability.)

​ Determine the migration strategy (incremental vs. Big Bang)
​ o Can changes be delivered safely alongside regular development (e.g.,
module by module, behind feature flags)?

​ o Is this a major framework rewrite or architecture shift that must be
released all at once?

​ o Choose based on risk, coupling, testability, and team capacity.
​ Run risk analysis for the migration approach

​ o What are the failure modes?
​ o What’s the rollback plan if something goes wrong mid-migration?
​ o Are there downstream teams/products that will be impacted?

​ Align product and UX expectations

Created by: Olena Gomozova olenkas.com

​ o Ensure PMs and designers are aware of potential regressions or visual
shifts.

​ o Make space for updated design reviews if needed.
​ Audit the current system (identify affected features, technical dependencies, and
dead code.)

​ Estimate scope and timeline realistically (include buffers for testing, regression,
and stabilization)

​ Evaluate and document all necessary library/API replacements
​ Plan to migrate to the latest supported versions to future-proof the
implementation.

​ Create one unified migration epic (avoid multiple epic environments at the same
time, including epics for concurrent projects)

​ Assign clear ownership (engage engineers familiar with the original code).
​ Plan for regression testing (involve QA early and align timelines accordingly).
​ Communicate system and team dependencies
​ Define success criteria and a “definition of done”

DURING migration

How to execute smoothly and avoid common pitfalls:

​ Schedule dedicated migration sprints or weeks
​ Avoid concurrent feature development (prevent context switching and
priority conflicts.)

​ Avoid multiple epic environments (avoid multiple epic environments at the
same time, including epics for concurrent projects)

​ Enforce code freeze if possible (otherwise, duplicate work will be needed)
​ Break work into actionable tickets
​ Simplify and refactor during migration (don’t migrate unnecessary
complexity).

​ Remove deprecated or unused code and files (e.g., legacy modules,
unused configurations).

​ Have the original authors refactor their code (speeds up work and reduces
the learning curve).

​ Collaborate closely with QA (Continuous testing vs full regressions)
​ Document and reuse migration patterns
​ Use AI/automation where safe and beneficial
​ Keep migration visible in all planning meetings
​ Document edge cases and legacy behavior as you migrate
​ Log deprecated features explicitly

Created by: Olena Gomozova olenkas.com

AFTER migration

Wrap-up, validation, and learning capture:

​ Remove all compatibility layers and workarounds
​ Complete full regression and performance testing
​ Ensure deprecated systems are fully removed (clean up codebase, CI
configs, documentation).

​ Document outcomes and learnings (share internally via Confluence, Slack,
etc.)

​ Run a migration retrospective (capture insights and improvements for next
time).

​ Celebrate completion (reinforce the business value and team effort).
​ Sunset old knowledge bases and update docs

OUTSIDE major migrations (ongoing practices)

Stay ahead of tech debt and migration fatigue:

​ Continuously refactor as part of feature work
​ Potentially establish an “Annual Migration Month” and use it to proactively
clean up and upgrade.

​ Set a minimum migration/refactor ticket goal per sprint
​ Balance technical debt in roadmap planning
​ Monitor library/framework versioning (track EOL and major version
deprecations).

​ Engineers to own system health (empower cleanup and migration-minded
thinking).

Created by: Olena Gomozova olenkas.com

	Web App Migration Checklist
	When to use
	How to use
	BEFORE migration starts
	
	DURING migration
	AFTER migration
	OUTSIDE major migrations (ongoing practices)

