Web App Migration Checklist

When to use

This checklist is intended as a reusable resource for engineering and technical leads
involved in planning and executing migrations. Use it to:

Scope and prepare a successful migration effort.

Ensure consistency across teams and systems.

Avoid common migration pitfalls and regression risks.

Align migration activities with QA, product, and roadmap planning.
Facilitate retrospectives and continuous improvement.

How to use
Use this checklist when:

Upgrading major frameworks, libraries, or dependencies.

Replacing legacy code.

Adopting new architecture patterns.

Planning any multi-sprint technical migration or refactoring initiative.
Planning cleanup following major feature launches where tech debt has
accumulated.

BEFORE migration starts
What to consider and prepare in advance:

[Define migration goals e.g. remove legacy systems, upgrade frameworks,
improve maintainability.)
[J Determine the migration strategy (incremental vs. Big Bang)
[J o Can changes be delivered safely alongside regular development (e.g.,
module by module, behind feature flags)?
[J o Is this a major framework rewrite or architecture shift that must be
released all at once?
[J o Choose based on risk, coupling, testability, and team capacity.
[J Run risk analysis for the migration approach
[J o What are the failure modes?
[J o What's the rollback plan if something goes wrong mid-migration?
[J o Are there downstream teams/products that will be impacted?
[J Align product and UX expectations

Created by: Olena Gomozova olenkas.com

[J o Ensure PMs and designers are aware of potential regressions or visual
shifts.
[J o Make space for updated design reviews if needed.
[J Audit the current system (identify affected features, technical dependencies, and
dead code.)
[J Estimate scope and timeline realistically (include buffers for testing, regression,
and stabilization)
[J Evaluate and document all necessary library/API replacements
[J Plan to migrate to the latest supported versions to future-proof the
implementation.
[J Create one unified migration epic (avoid multiple epic environments at the same
time, including epics for concurrent projects)
[J Assign clear ownership (engage engineers familiar with the original code).
[J Plan for regression testing (involve QA early and align timelines accordingly).
[J Communicate system and team dependencies
[Define success criteria and a “definition of done”

DURING migration

How to execute smoothly and avoid common pitfalls:

[J Schedule dedicated migration sprints or weeks

[J Avoid concurrent feature development (prevent context switching and
priority conflicts.)

[J Avoid multiple epic environments (avoid multiple epic environments at the
same time, including epics for concurrent projects)

[J Enforce code freeze if possible (otherwise, duplicate work will be needed)

[Break work into actionable tickets

[0 Simplify and refactor during migration (don’t migrate unnecessary
complexity).

[Remove deprecated or unused code and files (e.g., legacy modules,
unused configurations).

[J Have the original authors refactor their code (speeds up work and reduces
the learning curve).

[J Collaborate closely with QA (Continuous testing vs full regressions)

[J Document and reuse migration patterns

[J Use Al/automation where safe and beneficial

[CJ Keep migration visible in all planning meetings

[J Document edge cases and legacy behavior as you migrate

[Log deprecated features explicitly

Created by: Olena Gomozova olenkas.com

AFTER migration

Wrap-up, validation, and learning capture:

[J Remove all compatibility layers and workarounds

[J Complete full regression and performance testing

[J Ensure deprecated systems are fully removed (clean up codebase, Cl
configs, documentation).

[(J Document outcomes and learnings (share internally via Confluence, Slack,
etc.)

[J Run a migration retrospective (capture insights and improvements for next
time).

[J Celebrate completion (reinforce the business value and team effort).

[J Sunset old knowledge bases and update docs

OUTSIDE major migrations (ongoing practices)
Stay ahead of tech debt and migration fatigue:

[Continuously refactor as part of feature work

[J Potentially establish an “Annual Migration Month” and use it to proactively
clean up and upgrade.

[J Set a minimum migration/refactor ticket goal per sprint

[Balance technical debt in roadmap planning

[J Monitor library/framework versioning (track EOL and major version
deprecations).

[J Engineers to own system health (empower cleanup and migration-minded
thinking).

Created by: Olena Gomozova olenkas.com

	Web App Migration Checklist
	When to use
	How to use
	BEFORE migration starts
	
	DURING migration
	AFTER migration
	OUTSIDE major migrations (ongoing practices)

