
Technical delivery framework for high-complexity projects 

Purpose 
This framework brings structure and clarity to high-complexity projects—where multiple 
teams, systems, and decisions intersect. It’s built from years of experience delivering 
complex technical initiatives with deep dependencies. Without this structure, projects 
risk misalignment, delays, and rework. With it, we drive alignment, surface risks early, 
and deliver with confidence. 

TL;DR 
For projects with high technical and/or business complexity: first, define the full final 
solution and delivery path — then execute in clear, scoped phases. Don’t start building 
until the end state is defined. 

Why it matters: skipping structured planning leads to critical non-reversible architectural 
decisions, lack of scalability, poor integration choices, compounded rework cost, timeline 
collapse, stakeholder distrust, and solutions that fail to meet business or user needs. 

 When this framework is needed 

Low complexity projects — 
not required 

(e.g. websites/webpages) 

Step-by-step changes (e.g., website edits, static 
content pages). 

Work can proceed and iterate linearly, working 
forward. 

High complexity projects — 
recommended 

(e.g. applications, platforms, 
systems) 

Involve systems integration, workflows, user 
behaviors, and long-term maintenance. 

Must be approached by working backwards from the 
end state to avoid fragmented ("Frankenstein") 
outcomes. 

  

Created by: Olena Gomozova                                                                                     olenkas.com 
 



Involve the right people 

Responsibility Area Best Practices 

Decision Authority Appoint a lead with authority to say "No" to feature 
creep and conflicting requests (can be a Product 
Lead). 

Process Owner Assign a generalist with technical, business, and 
institutional knowledge. This person identifies red 
flags, reassesses scope, pulls in SMEs, and ensures 
cross-functional alignment (can be a Product Lead or 
Technical lead). 

Project Oversight Where possible, involve a dedicated Project Manager 
to track timelines, sign-offs, blockers, and deliverables. 

Stakeholder Identification Identify all impacted or involved teams. Secure 
engagement from both subject matter experts (SMEs) 
and domain decision makers. 

 

Stage discipline 
● Each stage may include feedback loops. 
● Red/yellow flags should be identified explicitly. 
● Stages may overlap, but should not be skipped. 

  

Cross-stage best practices 
● Feedback Loops: add review/re-evaluate points at every stage, especially before 

build and delivery. 

Created by: Olena Gomozova                                                                                     olenkas.com 
 



● Documentation: maintain clear records of goals, decisions, and known 
limitations. 

● Dependencies: track external dependencies explicitly (e.g., vendors, systems, 
approvals). 

● Risk Management: flag high-risk areas early. Create fallback plans. 
● Decision Logs: maintain a single source of truth for major decisions. 

  

Stages 

Stage Guiding Questions Key Actions Critical Tips 

 
Identify 
Problem 

What are the 
problems with the 
old system? 

What is the MAIN 
PROBLEM we are 
trying to solve? 

Who is the 
PRIMARY 
CUSTOMER? 

● Identify 
systemic 
issues: 
outdated logic, 
slowness, 
manual work, 
instability 

● Document root 
causes 

● Define the main 
problem this 
project is 
solving 

● Define the 
primary 
customer who 
will benefit 

IMPORTANT: 

❗Avoid discussing 
solutions 

● Understand 
WHY those are 
important 
(watch for 
personal 'wants' 
from internal 
teams vs actual 
needs of 
users/biz) 

✔ Ensure to have: 
subject matter experts, 
decision makers, 
impacted teams on 
both the biz & 
implementation sides 

Created by: Olena Gomozova                                                                                     olenkas.com 
 



 
Identify 
Goals 

What kind of 
outcome are we 
trying to achieve? 

● Gather desired 
outcomes from 
all stakeholders 

● Separate 
must-haves 
from 
nice-to-haves 

● Flag conflicting 
requests 

● Link goals to 
solving the 
main problem 
for the primary 
customer 

● Understand 
WHY those are 
important 
(watch for 
personal 'wants' 
from internal 
teams vs actual 
needs of 
users/biz) 

● Watch for 
conflicting 
requests. 

● Use authority to 
say NO as 
necessary 

✔ Ensure to have: 
subject matter experts, 
decision makers, 
impacted teams on 
both the biz & 
implementation sides 

  

 
Identify 
Project 
Team 

Who needs to 
participate in 
decision making? 

● Include 
decision 
makers + 
specialists 
from: 

● Engineering 
● Data 
● Product 
● Design, 

accessibility 
● Marketing/sale

s 
● Legal, finance, 

supply chain 

✔ Ensure to have: 
subject matter experts, 
decision makers, 
impacted teams on the 
biz & implementation 
sides 

Created by: Olena Gomozova                                                                                     olenkas.com 
 



● Ensure all 
impacted 
business + 
implementation 
roles are 
covered 

 
Identify 
Requirement
s 

What are the target 
characteristics? 

● Define 
functional + 
non-functional 
requirements 
(e.g., 
performance, 
reporting, 
security) 

● Sort into 
must-have, 
nice-to-have, 
out-of-scope 

● Include edge 
cases and 
constraints 

● Finalize with 
group approval 

IMPORTANT: 

❗Final group 
approval - a MUST 

● Understand 
WHY those are 
important 
(watch for 
personal 'wants' 
from internal 
teams vs actual 
needs of 
users/biz) 

● Remember 
about 
non-functional 
requirements 
(tracking/reporti
ng, translations, 
security etc.) 

● Watch for 
conflicting 
requests. 

● Use authority to 
say NO as 
necessary 

✔ Ensure to have: 
subject matter experts, 
decision makers, 
impacted teams on the 
biz & implement ation 
sides 

  

Created by: Olena Gomozova                                                                                     olenkas.com 
 



 
Determine 
Solution 
Options & 
Viability 

Is this even 
possible? How? 

● Can something 
like this be 
built? 

● What are the 
possible 
options/solutio
ns, and what’s 
the best one? 

● How’d we 
approach it? 

● What systems 
would be 
involved? 

● Is it feasible? Is 
it usable? 

● If so - create 
high-level 
system design 
for “state B” 

● What are the 
limitations? 

● What are the 
one-way door 
decisions? 

● What are the 
dependencies? 

● Ensure to have: 
subject matter 
experts, 
decision makers, 
impacted teams 
on the 
implementation 
side 

Important notes: 

● This is where 
the tech team 
can start 
working 
autonomously, 
and the wider 
team can step 
back. 

Created by: Olena Gomozova                                                                                     olenkas.com 
 



 
Repair or 
Replace 

Can we adapt the 
current system or 
must we rebuild? 

● Evaluate 
incremental vs 
rebuild 

● Define phased 
vs full 
migration 

● Confirm what 
form “State B” 
will take and 
how to get 
there 

● Document 
tradeoffs and 
transition plans 

● Ensure to have: 
subject matter 
experts, 
decision makers, 
and impacted 
teams on the 
implementation 
side 

Important notes: 

● This is where 
you can have a 
preliminary 
best-guess 
estimate (based 
on technical 
implementation 
leaders' “gut 
feeling”). This 
estimate is 
contingent on 
other factors like 
unknowns, other 
teams and 
dependencies, 
concurrent 
projects, etc. 
Such estimate 
could be used in 
planning/sequen
cing, but it 
should NOT be 
taken or 
communicated 
as an expected 
deadline. 

Created by: Olena Gomozova                                                                                     olenkas.com 
 



 
Assess 
Work: POC, 
Design, 
Timelines 

What are the 
distinct chunks of 
work? 

● Define key 
deliverables/co
mponents to be 
built 

● Draft low-level 
technical 
design for each 
chunk 

● Design 
prototypes 

● Migration path 
(e.g. data 
migration) 

● Key 
non-technical 
activities 
identified 
(testing, 
trainings, 
communication
s) 

● Timelines & 
milestones 
identified & 
agreed upon 

IMPORTANT: 

✅ “State B” is 
defined here (get the 
wider team sign-off 
before building) 

● Empower 
implementation 
teams to make 
decisions within 
their areas of 
expertise/respo
nsibility and 
communicate 
back to the 
wider team 

Important notes: 

● This is where 
you can have 
reliable LOE & 
time estimates 

● This is where 
you can start on 
simple projects 

● This is where we 
tend to start on 
all projects, 
which leads to 
multiple 
problems and a 
waste of time!!! 

Created by: Olena Gomozova                                                                                     olenkas.com 
 



 
Build 

Main execution 
phase 

● Each 
specialized 
team takes on 
design & 
decision 
making for their 
area with a 
CLEAR 
COMMON goal 
in mind 

● Coordinate 
across 
integration 
points 

● Keep blockers 
surfaced and 
tracked 

● Empower 
implementation 
teams to make 
decisions within 
their areas of 
expertise/respo
nsibility and 
communicate 
back to wider 
team 

● Build in phases 
if needed 

 
Test 

Testing and 
refinement 

● Internal testing 
● User testing 
● Pilots 
● Refinement and 

iterations 
● Address 

blockers before 
launch approval 

✔ Coordinate with 
wider team (biz & 
implement ation sides) 

Created by: Olena Gomozova                                                                                     olenkas.com 
 



Deliver New product 
shipped to users 

● Coordinate 
launch, support 
readiness, and 
documentation 

● Ensure training, 
comms, and 
incident plans 
are active 

● Monitor 
adoption and 
performance 

✔ Coordinate with 
wider team (biz & 
implement ation sides) 

 

Created by: Olena Gomozova                                                                                     olenkas.com 
 


	Technical delivery framework for high-complexity projects 
	Purpose 
	TL;DR 
	 When this framework is needed 
	Stage discipline 
	Cross-stage best practices 


